顯微鏡可以讓人看清楚小世界裡發生的事情,但是進入研究分子的時代,因為光的波長只有到數百個奈米(nm),所以以光學顯微鏡無法直接觀察分子的種類與型態,雖然可以利用電子顯微鏡,不過操作使用上難度高,研究人員也難輕易使用,偏光顯微鏡能提供分子排列的訊息,但是如果能用光學的方式直接看到分子或確定不同種類的分子存在與否,就能讓很多重要的物理或生物資訊被研究發現。而螢光顯微鏡就是目前在研究上用的最多與最重要的技巧之一。
一般顯微鏡利用光的吸收跟反射測來觀測物體,偏光顯微鏡利用光波的偏振特性,而螢光顯微鏡就是利用光在波長方面的特性的來觀測分子。原理是特定種類的分子(稱為螢光源,fluorophore)在吸收短波長的光之後可以放出長波長的光,觀測時如果能把原本的波長的光濾掉,只剩下激發後較長波長的的光被看到, 這樣一來就可以斷定特定的螢光分子是否存在。這樣的概念看似簡單,卻能帶來分子種類的解析性,舉例而言,像是把抗體加上螢光基團,就可以利用螢光辨識特定分子是否在樣品上,利用螢光蛋白序列加上改造的基因,就可以知道基因轉殖有沒有成功,把特定蛋白加上螢光蛋白,就可以在空間中甚至在細胞內追蹤分子或觀測神經纖維網路。在研究前沿上有數不完的研究,從生化檢測、基因定序、神經細胞結構等等,都是靠著螢光顯微鏡才能實現。
在技術上因為螢光訊號很弱,螢光顯微鏡通常用水銀燈或其他氣體放電燈作為光源,確保很強的光照,為了要濾除非螢光的訊號,需要很好的光學濾片組,這也讓螢光顯微鏡一直都只能在研究中或是在很貴的儀器內才能進行螢光偵測。
手機是現在人人都有的智慧裝置,結合了照像與傳輸分享的強大功能,如果在手機上如果能夠實現螢光的顯微觀測,將對科學發展有很大的幫助,有研究能力的手機顯微鏡與手機偏光顯微鏡之前已經由科學影像實現了,那手機有可能完成螢光觀測這項任務嗎?
讓手機顯微鏡變成有螢光的能力設計是這樣,首先在光源方面,因為半導體技術的發展,很多窄波段的固態光源變成可能,不再需要從全光譜中濾出特定的光出來, 而是可以直接有效率的使用半導體光源,所已選用合適的短波段高亮度的LED就能大部分解決激發光源的問題,且同時能降低對激發濾片(Excitation filter)的要求,可以以吸收式的濾片達成。
在光路上,目前一般的螢光設計是epifluorescence,由同個物鏡照出激發光,偵測背反射的螢光訊號,可以減少對發射濾片 emission filter的要求,但是同軸照明需要較複雜的設計與雙色濾片dichroic filter,基於同樣的考量,可以改用暗視野照明來達成,加上發射濾片emission filter,始發射光與螢光的光譜沒有交錯, 就可以觀測螢光了!
資料來源:pansci.tw/archives/63586